Publications

41

“Lanthanide binding peptide surfactants at air–aqueous interfaces for interfacial separation of rare earth elements,” Luis E. Ortuno Macias, Felipe Jiménez-Ángeles, Jason G. Marmorstein, Yiming Wang, Stephen A. Crane, Surabh K.T., Pan Sun, Bikash Sapkotae, Eshe Hummingbird, Woojin Jung, Baofu Qiao, Daeyeon Lee, Ivan J. Dmochowski, Robert J. Messinger, Mark L. Schlossman, Cesar de la Fuente-Nunez, Ravi Radhakrishnan, E. James Petersson, Monica Olvera de la Cruz, Wei Bu, Mrinal Bera, Binhua Lin, Raymond S. Tu, Kathleen J. Stebe*, and Charles Maldarelli*, PNAS 2024, 121, e2411763121.

40

A Fluorinated Ether Co-solvent Enables High Operating Temperature Li-ion Batteries,” Jonah Wang, Michael J. Keating, Harrison Asare, Elizabeth J. Biddinger, Robert J. Messinger, William C. West*, and John-Paul Jones*, J. Electrochem. Soc., 2024, 171, 120517.

39

38

Effects of Ion Mass Transport on Electrochemical Reaction Pathways in Aluminum-Anthraquinone Batteries,” Harrison Y. Asare, Surabh S. KT, Leo W. Gordon, George John*, Robert J. Messinger*, Electrochim. Acta 2024, 507,145031.

37

“Development of Fluoride-ion Primary Batteries: The Electrochemical Defluorination of CFx.” Loleth E. Robinson, Jonah Wang, Harrison Asare, Jessica L. Andrews, Balram Tripathi, Ram Katiyar, Brent C Melot, Robert J. Messinger*, Simon C. Jones*, William C. West*, J. Phys. Chem. C. 2024, 128, 14195−14205.

36

“Ternary Ionic Liquid Analogues as Electrolytes for Ambient and Low-Temperature Rechargeable Aluminum Batteries,” Jonah Wang, Theresa Schoetz, Leo W. Gordon, Elizabeth J. Biddinger*, RobertJ. Messinger*, ACS Appl. Energy Mater. 2024, 7, 5438-5446.

35

“Elucidating Consequences of Selenium Crystallinity on its Electrochemical Reduction in Aluminum-Selenium Batteries,” L.W. Gordon, R. Jay, A.L. Jadhav, R.J. Messinger*, ACS Materials Lett., 2024, 6, 2577−2581.

34

“Elucidating the Role of Electrochemically Formed LiF in Discharge and Aging of Li-CFx Batteries,” T. Schoetz, L.E. Robinson, L.W. Gordon, S.A. Stariha, C.E. Harris, H.L. Seong, J.-P. Jones, E.J.Brandon, R.J. Messinger*, ACS Applied Mater. Interf., 2024;  15, 18722–18733. [Co-first authors]

33

 

“Solid Polymer Electrolytes with Enhanced Electrochemical Stability for High-Capacity Aluminum Batteries,” O.-M. Leung, L.W. Gordon, R.J. Messinger, T. Prodromakis, J.A. Wharton, C. Ponce de León, T. Schoetz*, Adv. Energy Mater., 2024, 202303285. 

32

“Sulfur-Tuned Advanced Carbons of Novel Properties and Scalable Productivity,” Mariusz Barczak, Marc Florent, Snehal S. Bhalekar, Katsumi Kaneko, Robert J. Messinger, Teresa J. Bandosz*, Adv. Func. Mater., 2023, 2310398.

31

“Elucidating Failure Mechanisms in Li-ion Batteries Operating at 100 °C,” B.E. Hawkins, H. Asare, B. Chen, R.J. Messinger, William West*, John-Paul Jones*, J. Electrochem. Soc., 2023, 170, 100522.

30

“Reversible electrochemical anionic redox in rechargeable multivalent-ion batteries,” A.L. Jadhav, T.R. Juran, M.A. Kim, A.M. Bruck, B.E. Hawkins, J.W. Gallaway*, M. Smeu*, J. Messinger*, J. Am. Chem. Soc. 2023, 145, 15816-15826.
[Featured in “JACS Spotlights”: https://doi.org/10.1021/jacs.3c07672]

29

“Ionic Liquid Electrolytes with Mixed Organic Cations for Low- Temperature Rechargeable Aluminum−Graphite Batteries,” T. Schoetz, J. H. Xu, R.J. Messinger*, ACS Appl. Energy Mater.  2023, 6, 5, 2845–2854.

28

“Reversible Zinc Electrodeposition at −60 °C Using a Deep Eutectic Electrolyte for Low-Temperature Zinc Metal Batteries,”  .E. Hawkins, T. Schoetz, L.W. Gordon, Surabh KT, Jonah Wang, R.J. Messinger*, J. Phys. Chem. Lett. 2023, 14, 2378-2386. 

27

 

26

“Molecular-scale elucidation of ionic charge storage mechanisms in rechargeable aluminum-quinone batteries, ” L.W. Gordon, A.L. Jadhav, M. Miroshnikov, T. Schoetz, G. John, R.J. Messinger*, J. Phys. Chem. C., 2022, 126,14082-14093.

25

“Performance leap of lithium metal batteries in LiPF6 carbonate electrolyte by a phosphorus pentoxide acid scavenger,”  J. Zhang, J. Shi, L.W. Gordon, N. Shojarazavi, X. Wen, Y. Zhao, J. Chen, C.-C. Su, R.J. Messinger*, Juchen Guo*, ACS Appl. Mater. & Interf., 2022, 14, 36679−36687.

24

“Soluble electrolyte-coordinated sulfide species revealed in Al-S Batteries by nuclear magnetic resonance spectroscopy,”   Rahul Jay, Ankur L. Jadhav, Leo W. Gordon, Robert J. Messinger*, Chem. Mater., 2022, 34, 4486-4495.

23

“Electroactive ZnO: mechanisms, conductivity, and advances in Zn alkaline battery cycling, Brendan E. Hawkins, Damon E. Turney*, R.J. Messinger, A.M. Kiss, G.G. Yadav, S. Banerjee, T.N. Lambert.  Adv. Energy Mater., 2022, 2103294.

22

“Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems,”  T. Schoetz, L.W. Gordon, S. Ivanov, A. Bund, D. Mandler, R.J. Messinger*, Electrochem. Acta, 2022, 412, 140072.

21

“Interplay between coordination, dynamics, and conductivity mechanism in Mg/Al-catenated ionic liquid electrolytes,” G. Pagot, M. Garega, A.L. Jadhav, L.F. O’Donnell, K. Vezzù, B. Itin, R.J. Messinger, S.G. Greenbaum*, V. Di Noto*, J. Power Sources, 2022, 524, 231084.   .

20

“Tunable pseudocapacitive intercalation of chloroaluminate anions into graphite electrodes for rechargeable aluminum batteries,” J.H. Xu, T. Schoetz, J.R. McManus, V.R. Subramanian, P.W. Fields, R.J. Messinger*, J. Electrochem. Soc., 2021, 168, 060514.

18

Molecular-level environments of intercalated chloroaluminate anions in rechargeable aluminum-graphite batteries revealed by solid-state NMR spectroscopy,”  J.H. Xu, A.L. Jadhav, D.E. Turney, R.J.  Messinger.  J. Mater. Chem. A, 2020, 8, 16006-16017.

17

Magic‐angle‐spinning‐induced local ordering in polymer electrolytes and its effects on solid‐state diffusion and relaxation NMR measurements,” R.J.  Messinger, T.V. Huynh, R. Bouchet, V. Sarou‐Kanian.  Magn Reson Chem. 2020; 58: 1118– 1129.

16

Effects of Graphite Structure and Ion Transport on the Electrochemical Properties of Rechargeable Aluminum–Graphite Batteries,” Jeffrey H. Xu, Damon E. Turney, Ankur L. Jadhav, Robert J. Messinger. ACS Applied Energy Materials 2019 2 (11), 7799-7810

15

“Materials Compatibility in Rechargeable Aluminum Batteries: Chemical and Electrochemical Properties between Vanadium Pentoxide and Chloroaluminate Ionic Liquids,” Xiaoyu Wen, Yuhang Liu, Ankur Jadhav, Jian Zhang, Dan Borchardt, Jiayan Shi, Bryan M. Wong, Biplab Sanyal, Robert J. Messinger, Juchen Guo. Chemistry of Materials 2019 31 (18), 7238-7247

14

Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation,” T.V. Huynh, R.J. Messinger, V. Sarou-Kanian, F. Fayon, R. Bouchet, M. Deschamps. J. Chem. Phys., 2017, 147, 134902.

13

Non-topotactic transformation of silicate nanolayers into mesostructured MFI zeolite frameworks during crystallization,” Z.J. Berkson, R.J. Messinger, K. Na, Y. Seo, R. Ryoo B.F. Chmelka, Angew. Chem. Int. Ed., 2017, 56, 5164-5169.

12

Understanding local defects in Li-ion battery electrodes through combined DFT/NMR studies: application to LiVPO4F,” T. Bamine, E. Boivin, F. Boucher, R. J. Messinger, E. Salager, M. Deschamps, C.Masquelier, L.Croguennec, M.Meńet́rier, D.Carlier. J. Phys. Chem. C., 2017, 121, 3219-3227.

11

Correlated diffusivities, solubilities, and hydrophobic interactions in ternary polydimethylsiloxane-water-tetrahydrofuran mixtures,” S. H. Donaldson, Jr., J. P. Jahnke, R.J. Messinger, A. Östlund, D. Uhrig, J.N. Israelachvili, B.F. Chmelka.  Macromolecules, 2016, 29, 6910-6917.

10

Revealing defects in crystalline lithium-ion battery electrodes by solid-state NMR: applications to LiVPO4F,” R.J. Messinger, M. Ménétrier, E. Salager. A. Boulineau, M. Duttine, D. Carlier, J.-M. Ateba Mba, L. Croguennec, C. Masquelier, D. Massiot, M. Deschamps. Chem. Mater. 2015, 27, 5212-5221.

9

Molecular origins of macroscopic mechanical properties of elastomeric organosiloxane foams,R.J. Messinger, T.G. Marks, S.S. Gleiman, F. Milstein, B.F. Chmelka, Macromolecules, 2015, 45, 4835-4849.

8

Co-development of crystalline and mesoscopic order in mesostructured zeolite nanosheets,R.J. Messinger, K. Na, Y. Seo, R. Ryoo, B.F. Chmelka, Angew. Chem. Int. Ed., 2015, 54, 927-931.

7

Synthesis and electrochemical performance of the orthorhombic Li2Fe(SO4)2 polymorph for Li-ion batteries,” L. Lander, M. Reynaud, G. Rousse, M.T. Sougrati, C. Laberty-Robert, R.J. Messinger, M. Deschamps, J.-M. Tarascon, Chem. Mater., 2014, 26, 4178-4189.

6

Topological, geometric, and chemical order in materials: insights from solid-state NMR,” D. Massiot, R.J. Messinger, S. Cadars, M. Deschamps, V. Montouillout, N. Pellerin, E. Véron, M. Allix, P. Florian, F. Fayon, Acc. Chem. Res., 2013, 46, 1975-1984.

5

Increasing the detection speed of an all-electronic real-time biosensor,” M.R. Leyden, R.J. Messinger, C. Shuman, T. Sharf, V.T. Remcho, T.M. Squires, E.D. Minot, Lab Chip, 2012, 12, 954-959.

4

Directing zeolite structures into hierarchically nanoporous architectures,” K. Na, C. Jo, J. Kim, K. Cho, J. Jung, Y. Seo, R.J. Messinger, B.F. Chmelka, R. Ryoo, Science, 2011, 333, 328-332.

3

Understanding and controlling organic-inorganic interfaces in mesostructured hybrid photovoltaic materials,” S. Neyshtadt, J. Jahnke, R.J. Messinger, A. Rawal, T. Segal Peretz, D. Huppert, B.F. Chmelka, G.L. Frey, J. Am. Chem. Soc., 2011, 133, 10119-10133.

2

Suppression of electrokinetic flows by surface roughness,” R.J. Messinger, T.M. Squires, Phys. Rev. Lett., 2010, 105, 144503.  http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.105.144503

1

Phone: +1 (212) 650-8204
Fax: +1 (212) 650-8013

The City College of New York
Grove School of Engineering
Steinman Hall, Room 327
160 Convent Ave
New York, NY 10031

rmessinger@ccny.cuny.edu